Atatürk 1937 yılında yayınlanan bir geometri kitabı yazmıştır. Bu kitapta kullanılan yeni terimler ayrıntılarıyla açıklanmış ve üzerlerine örneklerde verilmiştir. Bu kitap geometri öğretenlere ve bu konuda bilgi edinmek isteyenlere kılavuz olarak kültür bakanlığınca yayınlanmıştır.

A. Dilaçar anlatıyor: “1936 yılı sonbaharında bir gün Atatürk beni özel kalem müdürü Süreyya Demir’ in yanına katarak Beyoğlu’ndaki Haset Kitapevine gönderip uygun gördüğünüz Fransızca Geometri kitaplarından birer tane aldırdı. Bunları Atatürk’le beraber gözden geçirdikten sonra ben ayrıldım ve kış aylarında Atatürk bu eser üzerinde çalıştı. Geometri kitabı bu emeğin ürünüdür.”

Mustafa Kemal bu geometri kitabını yazarak matematiğe daha anlaşılır yeni terimler kazandırmak isteğini Sivas’ ta girdiği bir geometri dersinde ortaya koymuştur.
Atatürk 13 Kasım 1937 tarihinde Sivas’ a gitmiş ve 1919 yılında Sivas Kongresi’nin yapıldığı lise binasında bir geometri ( Hendese ) dersine girmiştir. Bu derste öğrencilerle konuşmuş ve geometri üzerine çeşitli sorular yöneltmiştir. Ders esnasında eski terimlerle matematik öğreniminin ve öğretiminin zorluğunu bir kez daha saptayan Atatürk “ bu anlaşılmaz terimlerle bilgi verilemez. Dersler Türkçe terimlerle anlatılmalıdır.” Diyerek dersi kendi buluşu olan Türkçe terimlerle ve çizimleriyle anlatmıştır. Bu sırada derste Pisagor teoremini de çözümlemiştir.

Atatürk sadece siyasi ve idari alandaki dehası ile değil, sayısal dünyadaki üstün başarısı ile de karşımıza çıkmış oluyor.

 

ATATÜRK’ÜN GEOMETRİ KİTABI

 

         

        Müsellesin, zaviyetan-ı dahiletan mecmu’ü 180 derece ve müselles-i mütesaviyü’l-adla, zaviyeleri biribirine müsavi müselles demektir.” yerine Üçgenin iç açıları toplamı 180 derecedir ve eşkenar üçgen, açıları birbirine eşit üçgen demektir. dememizi Atatürk’e borçluyuz.

“Müsellesin, zaviyetan-ı dahiletan mecmu’ü 180 derece ve müselles-i mütesaviyü’l-adla, zaviyeleri biribirine müsavi müselles demektir.”

Osmanlıca bilmeyenlerimizin bu cümleyi anlayacağını sanmıyoruz. Bugün kullandığımız Türkçe ile yukardaki cümle şu anlama geliyor: “Üçgenin iç açıları toplamı 180 derecedir ve eşkenar üçgen, açıları birbirine eşit üçgen demektir.”1937 yılından önce öğrenciler metamatiği Osmanlıca terimlerle öğreniyorlardı. Daha doğrusu öğrenmiyorlar, ezberliyorlardı. Ta ki, Atatürk’ün bizzat yazdığı Geometri kitabında yeni matematik terimler geliştirilene kadar.

1937 yılının Kasım ayında yeni bir eğitim ve öğretim yılına girilirken, Mustafa Kemal Atatürk, Türk Dil Kurumu’nun çeşitli bilim dallarına ait Türkçe terimleri saptadığını, bu sayede dilimizin yabancı dillerin etkisinden kurtulma yolunda esaslı adımını attığını ilan eder. Aynı yıl okullarda, eğitim Türkçe terimlerle basılmış olan kitaplarla başlar ve bu olay kültür hayatı için önemli bir adım olur. Atatürk, dilde özleşmeyi olanakların son kertelerine kadar zorlamış, bilim ve düşün dilinin sadeleştirilmesinin ve eğitimin Türkçe yapılmasının gerekliliğini önemle vurgulamıştır.



Atatürk’ün geometri kitabı


Bilimsel terimlerin Türkçeleştirilmesinde karşımıza çıkan ilk adım yine, Atatürk’ün 1936-37 kış aylarında kendisinin yazdığı ve geometri öğretiminde yol gösterici olarak tasarlanan 44 sayfalık bir geometri kitabı. Kitap, 1937’de Milli Eğitim Bakanlığı tarafından yazar adı konmadan yayınlanmış, 1971 yılında da ikinci bir baskısı Türk Dil Kurumu tarafından çıkarılmış. Kitapta yer alan, günümüzde de kullanılmakta olan pek çok terim, Atatürk tarafından türetilmiş. Atatürk’ün türettiği sözcükler ile daha önce kullanılan Osmanlıca sözcükler karşılaştırıldığında yapılan işin önemi ortaya çıkıyor. Tablodan da görülebileceği gibi bugün kullandığımız matematik terimlerinin hemen hemen tamamı Atatürk tarafından türetilmiş, başka bir ifadeyle bu sözcüklerin büyük çoğunluğu tutmuş. Atatürk’ün önerdiklerinden sadece “varsayı, pürüzma, dikey üçgen, dikey açı, tümey açı, imsiy, ökül, yüre” terimleri yerine, bugün sırasıyla “varsayım, prizma, dik üçgen, dik açı, tümler açı, benzerlik, tüm/bütün, küre” terimleri kullanılıyor.


Osmanlıcası - Atatürk’ün önerdiği


Bu’ud - boyut

mekan - uzay

satıh - yüzey

kutur - çap

nısf-ı kutur - yarıçap

kavis - yay

muhit-i daire - çember mümâs - teğet

zâviye - açı

re’sen mütekabil zâviyeler - ters açılar

zâviyetan’ı mütabâdiletân-ı dâhiletan - iç ters açılar

kaaide - taban

ufkî - yatay

şâkulî - düşey

amûd - dikey

zâviyetân-ı mütevâfıkatân - yöndeş açılar

va’zîyet - konum

mustatîl - dikdörtgen

muhammes - beşgen

müselles-i mütesâviyü’l-adl⒠- eşkenar üçgen

müselles-i mütesâviyü’ssâkeyn -

ikizkenar üçgen şibh-i

münharif - yamuk

mecmû - toplam

nisbet - oran

tenasüb - orantı

mesâha-i sathiyye - alan

müştak - türev

müsavi - eşit

mahrut - koni

faraziye - varsayı

hat - çizgi

mukavves - eğri

seviye - düzey

dılı - kenar

muvazi - paralel-koşut

menşur - pürüzma

hattı mail - eğik

veter - kiriş

re’s - köşe

zaviyei hadde - dar açı

hattı munassıf - açıortay

muhit - çevre

kaim zaviyeli müselles - dikey üçgen

tamamlıyan zaviye - tümey açı

murabba - kare

mümaselet - imsiy

umumi totale - ökül

küre - yüre


Agop Dilaçar:

'Atatürk’ün prensipleri doğruydu’


Atatürk’ün dil çalışmalarını yakından izleme olanağı bulan tanınmış dil uzmanı Agop Dilaçar, Atatürk’ün yazdığı geometri kitabı üzerine şunları söylüyor:


“Atatürk hep matematikle uğraşırdı. Eski geometri terimleri çok ağdalı idi. Ben bile uzun uzun bu terimleri okuduğum halde, şimdikiler karşısında güçlüğünü daha iyi anlıyorum. Pedagojide bir gerçek var: Fikir yolunun açık olması, bir ipucunun bulunması lazımdır. Yoksa bir külçe gibi çöker. Müselles kelimesini ele alalım. Arapça okullarımızdan kaldırılmıştır. Sülüs’ten müstak (türetilmiş) bir kelime olduğunu öğrenici nasıl bilsin? Arapça yoğurucu bir dildir. Örneğin müsteşrik, şark kelimesinden gelmiş bir kelimedir. Önüne, ortasına, arkasına birtakım heceler eklenmiş. Bunun aslını bulmak bir Arapça gramer meselesidir. Okullarımızdan Arapça, Farsça kaldırılmış olduğundan, öğrenici “müselles”i kütle kelime olarak karşısında görecektir. “Üç” aklına gelmeyecektir. Ama müselles yerine üçgen dersek, bir üç var. “Gen”, Atatürk’e göre “genişlik”ten alınmıştır. Bir ipucu var. “Dörtgen”, dörtten gelmiştir. Bir ipucu vardır. Eşit, denk anlamına gelen eş’ten gelmiştir. Ama müsavi Arapça bir kelimedir. Bu sebeple Atatürk’ün prensipleri burada da doğru idi. Onun için bu en ağdalı olan bilim dalını ele aldı ve kitabı örnek olarak bıraktı.”

(Kaynak: S. A. Terzioğlu; Atatürk 1936-1937 yılında bir “geometri kitabı” yazmıştı. Cumhuriyet gazetesi, 15 Haziran 1971, s.1 ve 7.)

Atatürk Sivas Lisesi’nde matematik dersi veriyor

Atatürk, 1937 yılının 29 Mart’ında, ceyb (sinüs) ve teceyb (cosinüs) terimlerinin karşılıklarının bulunması için Ulus Gazetesi’ne ilan verdirerek bir yarışma açtı. Daha sonra, hazırlanan tüm terimler üç aylık Türk Dili Belleten Dergisi’nin Ekim 1937 tarihli sayısında yer aldı. 26 Eylül’de yapılan 5. Türk Dil Bayramı etkinlerinin de yer aldığı sayıda; matematik, fizik, kimya, biyoloji, zooloji, botanik, jeoloji terimlerinin Türkçe karşılıkları, Osmanlıca ve Fransızca adları bulunmaktadır.

Terim çalışmalarının ülkedeki etkilerini Atatürk, fiili olarak da inceledi. Ülkedeki pek çok okulu ziyaret ederek öncelikle matematik derslerine girdi ve öğrencilerin dersteki başarılarını gözlemledi. 1937 yılında Kültür Bakanı Saffet Arıkan, İçişleri Bakanı Şükrü Kaya, Sabiha Gökçen, İsmail Hakkı Tekçe ve yaveri Naşit Mengü eşliğinde bir heyetle Sivas Lisesi’ne gitmişti. Lisenin 9-A sınıfında programdaki geometri (o zaman ki adıyla hendese) dersine girmiş bu derste bir kız öğrenciyi tahtaya kaldırmıştı. Öğrenci, tahtada çizdiği koşut iki çizginin, başka iki koşut çizgiyle kesişmesinden oluşan açıların Arapça adlarını söylemekte zorluk çekip yanlışlıklar yapınca durumdan etkilenen Atatürk tepki gösterdi. “Bu anlaşılmaz Arapça terimlerle, öğrencilere bilgi verilemez. Dersler, Türkçe yeni terimlerle anlatılmalıdır.” diyerek tebeşiri eline aldı, tahtada çizimlerle ‘zaviye’nin karşılığı olarak ‘açı’, ‘dılı’nın karşılığı olarak ‘kenar’, ‘müselles’in karşılığı olarak ‘üçgen’ gibi Türkçe yeni terimleri kullanarak, birtakım geometri konularını bu arada Pisagor teoremini anlattı.

(Kaynak: Ömer L. Örnekol’un anıları. Bilim ve Teknik, Kasım 1982, Sayı: 180.)
Atatürk Sivas Lisesi’nde matematik dersi veriyor

Atatürk, 1937 yılının 29 Mart’ında, ceyb (sinüs) ve teceyb (cosinüs) terimlerinin karşılıklarının bulunması için Ulus Gazetesi’ne ilan verdirerek bir yarışma açtı. Daha sonra, hazırlanan tüm terimler üç aylık Türk Dili Belleten Dergisi’nin Ekim 1937 tarihli sayısında yer aldı. 26 Eylül’de yapılan 5. Türk Dil Bayramı etkinlerinin de yer aldığı sayıda; matematik, fizik, kimya, biyoloji, zooloji, botanik, jeoloji terimlerinin Türkçe karşılıkları, Osmanlıca ve Fransızca adları bulunmaktadır.

Terim çalışmalarının ülkedeki etkilerini Atatürk, fiili olarak da inceledi. Ülkedeki pek çok okulu ziyaret ederek öncelikle matematik derslerine girdi ve öğrencilerin dersteki başarılarını gözlemledi. 1937 yılında Kültür Bakanı Saffet Arıkan, İçişleri Bakanı Şükrü Kaya, Sabiha Gökçen, İsmail Hakkı Tekçe ve yaveri Naşit Mengü eşliğinde bir heyetle Sivas Lisesi’ne gitmişti. Lisenin 9-A sınıfında programdaki geometri (o zaman ki adıyla hendese) dersine girmiş bu derste bir kız öğrenciyi tahtaya kaldırmıştı. Öğrenci, tahtada çizdiği koşut iki çizginin, başka iki koşut çizgiyle kesişmesinden oluşan açıların Arapça adlarını söylemekte zorluk çekip yanlışlıklar yapınca durumdan etkilenen Atatürk tepki gösterdi. “Bu anlaşılmaz Arapça terimlerle, öğrencilere bilgi verilemez. Dersler, Türkçe yeni terimlerle anlatılmalıdır.” diyerek tebeşiri eline aldı, tahtada çizimlerle ‘zaviye’nin karşılığı olarak ‘açı’, ‘dılı’nın karşılığı olarak ‘kenar’, ‘müselles’in karşılığı olarak ‘üçgen’ gibi Türkçe yeni terimleri kullanarak, birtakım geometri konularını bu arada Pisagor teoremini anlattı.

(Kaynak: Ömer L. Örnekol’un anıları. Bilim ve Teknik, Kasım 1982, Sayı: 180.)
www.matematikgeometri.com